GLOSSARY

Reliability

accident	event that caused a harm	
ACID	atomicity: all of the operations in the transaction will complete or none will	
atomicity consistency isolation durability	consistency: the database will be in a consistent state when the transaction begins and ends	
	isolation: the transaction behaves as if it is the only one being performed	
	durability: when completed, the transaction's operations will not be reversed (that is a separate action).	
	see also eventual consistency.	
airplane safety	The number of hull losses per million flights.	IEEE Spectrum Sept 2000
	Concord (now: 11.64	The day Concorde fell to
	737: ~1	Earth"
ARM-R	One is upside down and rotate 90deg to eliminate some upsets from common electrical spike.	
Ashby's law of requisite variety	"Any controller, to be effective, must have sufficient variety in its coping mechanisms to counter the variety of actions that could be exhibited by the system to be controlled."	
	See also fast fail	
assurance	"justified measures of confidence that the system functions as intended" and is reasonably free of flaws.	
	Uses a clear, comprehensive, defensible argument	
analysis	analysis tends to affirm (justify) that the system is safe, versus	
	analysis that test the system to find the limits of its safety	
AT&T	modular redundancy; when it deviates from very narrow constraints, it shuts down; shutdown is announced.	
availability	"percentage of time during which the system is operational and conforms to specification."	A Villemeur, Reliability, Availability, Maintainability,
	See also integrity aspects	and Safety Assessment, Vol 1 Wiley 1991
	$=\frac{MTTF}{MTTF + MTTR}$	Gibson 1993
	see also Gompertz law of mortality, MTTF. MTTR, reliability, Weibull power law	
block sparing	Block sparing is a part of a fault recovery and masking technique, usually done at a file- system level. When a block is discovered to be going bad:	
	1. The block's data is duplicated to another disk block,	
	2. The data structures referring to the block are updated, and	
	3. The block is marked bad	
	see fault masking, SMART	
Byzantine failure	A component – software module, computer, router, etc. – fails but keeps on operating. This failure might be a software bug, hardware fault, or outright sabotage. In packet	
	COPYRIGHT RANDALL MAAS, 2003-2010	
	FILE G:\My Documents\Glossary\Glossary Reliability;5.doc	MAAS · 2018.08.13

	networks, message processing, or data flow systems, this type of failure can be very hard to track down. Examples include misrouting messages, changing fields inappropriately, corrupt data, perform correctly – except for data from one user, or flood the network with garbage	
	See also <i>failure</i>	
common mode rejection ratio	A measure of an instruments ability to ignore or reject interference from a voltage common to its input terminals relative to ground. Usually expressed in dB.	
complexity	"A high level of complexity, unless it is there to increase robustness, poses more threats to system operation."	Ogmjen Prnjat, Lionel Sacks, "Integrity Methodology for Interonerable
	"A high level of coupling (sometimes considered a form of complexity) between components indicates a high level of interdependence: a change in a system component will ripple through the system via the coupling paths."	<i>Environments"</i> IEEE Communications, <i>May 1999</i> <i>p126-1</i>
communication complexity	"How many operations or messages need to be generated to perform some action."	
computational complexity	"How well a given procedure can be analytically described or determined."	
time complexity	"How long (how many iterations or cycles) an operation takes."	
conflict catcher	A well-regarded product for the Macintosh, thru System 9; similar techniques are available for other systems as well, and the techniques are useful:	
	Rollbacks	
	• Testing	
	Automatic detection of conflicts Metrics	
	See also <i>error correction</i> , <i>journaling</i>	
coupling	Affects flexibility in system, constraints on timing, operation sequencing, acceptable input data ranges.	
loosely coupled	If 'A' fails B can go on with it's operations; it isn't critical;	
	very flexible assumptions, flexible timing and sequencing, flexible time constraints.	
tightly coupled	Opposite; less flexible in how it handles errors / faulty. Real time or very tight control systems.	
criteria	absolute: compliance with target; often quantitative	
	relative: relative to previous or existing XYZ (e.g. product)	
	reductive: "as low as reasonably possible" (reduce it as much)	
critical component	Any <i>component</i> within a critical device whose failure to perform can reasonably be expected to cause failure or decline in safety or effectiveness in a critical device.	
	see also critical device.	
critical device	A critical <i>device</i> is one whose failure to perform can reasonably be expected to result in injury.	
	see also critical components, critical operation	
critical operation	A critical <i>operation</i> is any operation – that if improperly performed – can reasonably be expected to impact a critical device: such as causing failure, impact its safety, or affect its effectiveness.	
	see also critical component, critical device	
danger index	= Safety Index + C where C is a normalizing constant (say 10)	

see also safety index

deadlock	"Block in a state expecting a message or event which will not or cannot occur."	<i>Prnjat</i> ibid
	See also <i>livelock</i>	
defect prevention	Functional specification defects, system design defects, programming defects, maintainability, root cause analysis. Critical success factors for peer reviews. Inspections, how to do them. How create and use specifications to minimize defects, ways to track and control defects.	
dependability	Decide what components (software, hardware, etc) will be relied on. Identify the critical properties, determine the level of confidence required. The properties: what are they and how atomized are they?	
dual-string configuration	any failed component in one string can be replaced by its twin in the other string.	
dynamic fault recovery	If a fault in a module is detected, the modules is disabled and a spare module is enabled. A series of actions is then performed to resume the normal operation.	
electronic	$t_0 \rightarrow t_s$ (settling time)	
components failure rate	$t_s \rightarrow oo R(t)$	
	Reliability with time	
	$R(t) = Ge^{-\lambda t}$	
	G = constant	
	Lambda = sum of the failure rates of all constituent components	
	1/lambda = mean time between failure	
environmental testing	Compatibility testing, performance and stress testing. Security & controls testing, database testing, software testing. Error and disaster recovery testing. GUI testing, Client/server testing. Internet based app testing. Reliability testing.	
error control strategy	Specifies how error are determined (eg time-outs, explicit notifications) and what will be done when an error occurs (usually a retry).	
error handling	Detecting when an error/exception condition occurs	
systematic	Determining where and what should handle such conditions	
	The actual stop or recovery actions. This should be as graceful as possible. Should not exit the program except when absolutely necessary.	
	Some techniques employ a combination of codes must uniquely identify the path to the original failure.	
error codes	Error codes are often returned back through several levels of function calls until they are handled appropriately. The need to preserve various error states for higher layers (push/pop errno).	
error messages	There may be a clear relationship between user action and error. Such as the system's design anticipated this kind of error and reports cryptic messages, deceptive messages, misused, unspecific. Worse, these messages and errors are never human tested. The other kinds are errors the design didn't anticipate: Here is something bad, here are tea leaves. Hope you can figure it out.	
exception handling	A type of error and distributing.	
	longjmp/setjmp. Return through several layers of calls, leaves global state as it was of at longjmp() time, not setjmp() time.	

	Exceptions – try catch, throw. Like longjmp/setjmp in many regards. Calls destructors of locally declared objects for each level until gets back to catch spot.
error rate	For a given span of operation, testing only provide reliability estimates to ~104^-4 errors/hour (Littlewood & Stringini 1993)
	Avionics, nuclear power require better than 10 ⁻⁹ errors/hour
eventual	consistency: client perceives that a set of operations has occurred all at once
consistency	availability: every operation must terminate in a defined response (pass, fail, etc.)
	partition tolerance: operations will complete, even if individual components are unavailable (e.g. it fails).
	see also ACID
fail safe	Under failure modes do safe things. Default deny/permit
	Weakest link :strength in proportion to risk
	Choke point: allows focus to within bounds that can be dealt with
	Least privilege: minimal privilege to do the task, no more.
	Defense in depth: a variety of protective mechanisms to produce defense.
	Diversity of defenses: a variety of methods and approaches to defense.
	Universal participation: all must participate.
	Simplicity.
failure	FMEA, fault tree
engineering for	Employees tools and approaches simultaneously. (Note: simultaneous events are often so hard to analyze rationally that they are examined only as an exception—if they are likely to occur)
	Reduces probability of fault event
	Reduces direct impact of fault
	Recover from fault
	Note the deterioration or degradation of components and the functionality is often talked about separately.
	see also error correction, error handling
fast fail	Determine out-of-bounds and disengage. This is often very useful, during development, for making the underlying mechanism robust, rather than the fault-handling mechanism; this is useful when the range of variety of disturbances is unknown. It is discouraged with released products.
	see also Ashby's law of requisite variety
fast recovery	Identify the 20% you need for fast recovery 1 vs the 80% infrequently used. Residency bits, locality of reference tools, used to identify frequency of use.
fault	What you wanted didn't happen.
	Topics: Detection, Isolation, Localization (finding it), Notification, Mitigation (Protection and Restoration)
	Fault model; fault hypothesis, fault containment unit
fault avoidance	Prevents faults (so they don't have to be handled) thru estimation, forecasting and prevention. Limit the introduction of faults during the system construction. The approach includes good specifications, good programming practices & discipline, extensive & repetitive reviews & analysis, testing.
	prevention: reduces likelihood of faults occurring before the system becomes operational removal: find and remove causes of errors forecasting: techniques that estimate the presence, creation and consequences of faults

fault capture	Often system trace. In emulation environment; in production environment with hardware support; in production with no hardware support. <i>See trace</i>				
fault domain					
fault handling	What you do to make it right. This may require detection ,identification, correction (diagnosis, masking, recovery), and communication (documentation, labeling, notification, and logging)				
	Erro it dic requ	r: A component did not deliver results it was expected to. Either does task or provides th d not and a summation of why. Multi-case: provides for another route to get result original ested.	at Ily		
	The	failure should be conservative and do no harm. Roll back to an unharmed state.			
	Trad issue	eoff: how much time are you allowed between detecting and the time you must have the e corrected?			
	Resp	bonses to restore after a fault:			
	1.	Well-defined procedures that require overall coordination (within area of restoration)			
	2.	Tools to aid operators & area coordinators execute operating procedures & make proper decisions			
	3.	Regular training sessions of a varied nature			
	Hane	dling:			
	1	1. Detect fault e.g. usually with a redundancy of some form, timeout, or a degradation in performance. Note exceptions have issues; try to construct them in a safe manner.			
	2	 Go back to safe state. Dump out crud, eg trace buffers. Try alternate logic. If nothin, worked report to caller. Eventually that is step 3. 	g		
	3	3. Error messages. See <i>error handling</i>			
fault masking	The customer doesn't know what you did to do right by him, but gets good service. Usually accomplished thru fault handling.				
fault prevention	Structured design, static analysis (e.g. lint), Rigorous design rules, Quality Control, good Design practices.				
	Normal conditions, and continued operation. Parameter specifications.				
	Shu	tdown operations. Parameter specifications.			
fault tolerance	Fault tolerance keeps system going in the face of faults by protecting against and compensating for faults. The techniques include: watchdog timers, periodic resets, reasonableness and acceptability checks, design diversity, and data diversity				
	n-fa	ult tolerant: can tolerate <i>n</i> failures without degradation.			
FMEA failure mode	Loo	k at schematic and graph of hardware. For each element, ask:			
effects analysis	What would if element failed? e.g. Completely fails, of 25% value shift.				
	What if link to element fails (e.g. stuck high, stuck low, or open)? Looks at connection to node.				
	Does not ask how it could fail; assumes it does. Only a SPOF method				
	Because schematics can get large, often only a subset is examined. The output or safety related sections. The items of designer or developer concern. Items that came out of the above.				
	Som	he components (to its input) have defined FMEA results. Many do not.			
formal methods	"Fo tech with	rmal methods used in developing computer systems are mathematically based nniques for describing system properties. Such formal methods provide frameworks nin which people can specify, develop, and verify systems in a systematic manner."	IEEE Computer, September 1990 p8		
	"Fo atte wor	rmal methods are based on mathematics but are not entirely mathematical [They mpt to] codify the customer's informally state requirements [and] map the real 'ld to some abstract representation of it."	IEEE Computer, September 1990 p19-20		
hazard	circ	umstances causing an incident or accident			

incident	event that did not result in a harm	
integrity	See availability, feature integration, journaling, liveness, performance, reliability, resilience, robustness, safety, scalability, security	<i>Prnjat</i> ibid
operational level	Requirements to "minimize feature interactions can be achieved through thorough interconnection and interoperability testing, following a defined set of scenarios. A high level of resilience and robustness can be achieved performing extensive test in test beds, simulating possible behaviour of the environment."	
system level	Behaviour modeling, reachability analysis, livelock/deadlock detection techniques. "data coherence policies supporting atomicity, consistency, isolation, and durability of transactions."	
integrated level	"to maximize the computational and data complexity system metrics"	
unit level	Performance measurements.	
interactions	Dependencies between components. Linear (simple) interaction: components only affect others functionally downstream. Complex: interact with many others in many other parts of the system; hard to understand & predict behaviour. Complex + tightly coupled: promotes accidents.	
interruptions	• "The nature of the interruption	kovitz
-	• "Any effects of the interruption	
	 "And parameters that can vary from one instance of the interruption to the next 	
	• "How the interruption can be detected	
	 "Which actions the interruption can interrupt 	
	 "How to respond to the interruption; especially how or whether to resume the interrupted process." 	
journaling roll-back	 Why? To catch conflicts with device driver and configurations System recovery Databases Backup emergency restore Scroller for going back in time. 	
livelock	"oscillates between a closed set of states"	Prniat ihid
IVEICCK	See also deadlock	T Hijut Ibiu
	See also dedulock	Our ist ikid
liveness	That something will, eventually, happen."	Prnjat ibid
load	What to do when the load is too high (or will become too high) to service. 1: load shedding, direct. RED, disable lower priority services, stop servicing some customers.	
	 indirect: raise rates, RED which indirectly signals to others to stop, ask to reduce load. Add more capacity, lease or purchase processors, etc. 	
shedding	Needs to decide what to shed	
monitor	A control program that oversees the allocation of resources among a set of user programs.	
boot monitor	A control program used in the boot process, and may include a user directed mode	
debug monitor	A user directed, simple 'debugger' tool	
hypervisor	Hierarchy of supervisors in IBM mainframes	
kernel security	Tracks privileges, users identifiers, decides if an action can be carrier out: manages page	
,		

patch table	Delivery of patch, verify its authenticity, examining it, storing it in non-volatile memory,	http://www.dot.state.ny.us /traffic/files/dotmes.pdf
opposing-traffic sensor	This is a fail-to-a-safe-state mechanism used in traffic lights. It is a sensor that checks to see if the signal lights ever allow vehicles to enter the intersection from opposite directions. When sensor detects such an event, it shuts down the traffic signal's primary controller and has the lights, in all directions, blink red; the condition must be cleared manually after a person figures out what went wrong. Such a sensor must completely separate from the signal controller, and consider green, yellow, turn-lane arrows, pedestrian controls, etc. see also <i>fail safe, trace buffer, watchdog timer</i>	Traffic intersection design standards: http://www.urbandalelibrra ry.org/Urban_Design_Stand ards/chapter13.pdf New York State specifications for traffic controllers:
real time	 The process currently running is guaranteed to be highest-priority task Context switches have a bounded worst-case time Interrupt latency has a bounded worst-case time Prevention of unbounded priority inversion 	
operating system deterministic	The worst-case execution time of each its system calls is calculable.	
multiple modular redundancy	Each module is replaced by a series of identical modules Their outputs are compared to derive a correct majority should one of the modules fail.	
	$MTTF = AJ^{-n}e^{kT}$ where A = empirical coefficient J = current density N = 13, metal composition and thickness coefficient Ea= activation energy k = Boltzman's constant T = temperature of metal connection	
Black's Equation	$\frac{E_A}{4\pi}$	
MTTF mean time to failure	$=\int_{0}^{\infty} dt Reliability(t)$	
	Used to describe a RAID system with all failures assumed to be independent. N is the numbe data disks in the raid group, G is the number of parity disks (eg possibly done with multiple RAID groups)	r of
MTTDL mean time to data loss	$=\frac{MTBF^2}{N(N/G+1)MTTR_G}$	
structure checking	Checks that pointers reference expected structure; possibly via magic #. Is an assertion that must be ensured by the creator of the class, must be preserved by every exported routine of the class. The entire data structure be test validity.	
asserts	Conditional tests regarding the validity of the data, may trigger debugger	
	Return codes. especially when a pointer or handle is returned. Array indices should be before end; use of buffer, end of buffer	
range checks	Parameter validation. The trick is to recognize that most parameters will be correct. Pointers shouldn't ne null, and should point to valid address; numbers should be within	
supervisor	?	
security monitor	Programmer defined monitor within an application. This is used within Java to decide if	
monitor	allocations and privileges; sets, responds to and effects resource limits.	

program maintenance	"program maintenance consists chiefly of changes that repair design defects. Much more often than with hardware, these changes include added functions. Usually they are visible to the user."	Fred Brooks p121-112
	"The fundamental problem with program maintenance is that fixing a defect has a substantial (20-50 percent) chance of introducing another Why aren't defects fixed more cleanly? First, even a subtle defect shows itself as a local failure of some kind. In fact, it often has system-wide ramifications, usually non-obvious. Any attempt to fix it with minimum effort will repair the local and the obvious, but unless the structure is pure or the documentation very fine, the far-reaching effects of the repair will be overlooked. Second, the repairer is usually not the man who wrote the code."	
quality baked in with good	1. Thoughtful planning. List of activities, milestones (to focus, and to track progress), temper with past data	
project management	2. Commitment by company, but don't over commit on deliverables	
2	3. Tracking: examine 'why there are delays, and when to re-evaluate'	
	4. Teams are important	
	5. Review work and progress: detect defects early, review at ones own pace	
	6. Quality mechanisms, step. Requirements specification preparation, design & algorithm choice, coding and unit testing, integration testing, peer review meetings, documentation	
	7. Prevent & catch defects. Avoid adding new defects, use checklists, simplicity hides fewer defects and easier to maintain, complexity lends to poor testability, test as you implement, changes should support testing, maintenance, debugging, design should center on its use.	
quality metrics	Testability	
	Maintainability	
	Clarity	
	Common complexity vs essential complexity	
	Which sections should be rewritten	
	Guide to rewriting	
software quality	Difficult due to ego reasons and ease of longevity Tight definition of interface	
	• What goes in definition?	
	 How to tell if something is missing? 	
	Versioning an interface	
	 How an interface is allowed to change with time Variables calls call tables call sequence allocation and memory use 	
	Common elements of bad design:	
	Change setting X (directly or indirectly)	
	 Data flow – linking failure 	
radiation hard total ionizing dose	accumulates radiation damage, changing threshold, leakage, etc.	
single event latch up	a single event upset that creates a CMOS latch up, requiring a power cycle.	
single event upset	soft error caused by an ion triggering an electrical transient	
rate monotonic analysis	Optimal means of assigning relative priorities. Can demonstrate that a set of tasks will always meet their deadlines, even under worst case situation. Priority inversions must be bounded (i.e., unbounded inversions must be prevented). Strict system use a preemption system to guarantee. In the analysis tasks are assigned a fixed priority (either absolute # or	

	relative to other task), that is not changeable at runtime.	
	The priority assigned based on how often the task runs in the worst case.	
	Tasks that are given the same priority, any of the following can be done:	
	1. Merge the tasks, and just run Task 1, Task 2, etc.	
	2. Give them equal priority, with round robin or run-to-completion behavior.	
	3. Give them adjacent unequal priorities	
	See also <i>real-time</i> scheduling	
	See also rear time, seneauting	
real-time	Real-time software measures, monitors, analyzes and controls real-world events as they occur; often it must respond within in strict time constraints. This includes	
	 Monitoring or data capture from the external environment 	
	• Analysis of data in order to transform it into forms required by the application	
	Controls to respond to external events	
	 Coordinating system components. 	
operating system design	Low interrupt latency is often achieved by never (ever) disabling interrupts in the kernel. Does this mean never turning off the "global interrupt enable" or never turning of the specific peripheral's interrupt enable?	
	See also rate monotonic analysis	
hard real time		
soft real time		
RED random early discard	Used only when there is automatic retry/retransmission. Discards elements when queue length exceeds a threshold. This works, not because it temporarily sheds load, but because the sender scales back the rate at which it sends. At first the sender slows because it hasn't recvd enough acks to continue; but it also adjusts its estimate of network load and sacles back the send rate.	
reliability	"Probability of a system performing its purpose adequately for the period of time intended under the operation conditions encountered."	A. L. Reibman, M. Veeraghavn, "Reliability Madaling: An Quarting for
	Optimistic: assumes that none or few conflicts are likely to be experienced by any particular user of the shared resources.	System Designers," IEEE Computer April 1991
	Pessimistic: tend to assume the worst possible case and to defend against it by rather austere measures that often end up limiting concurrency.	
	Safe: if all processes already granted resources would be able to complete in some order even if each such processes were to use all resources they are entitled to.	
reliability	$=e^{\frac{-t}{MTTF}}$	Siewiorek 1992i
reliability	should provide adequate means for its functionality to be unaffected by faults	
	possibly provide means of reducing probability of fault events.	
	should provide a means of tolerating faults	
	should be stable over time – its behaviour and functionality should not evolve to undermine any aspect of the system	
	it should provide a means of recovering from faults	
	Fuses that can be used to disconnect defective functional units.	
	see also storage reliability	
	Reliability: Probability that it works during the desired time period	
	Availability: probability that it works (over all time)	

	Dependability		
	Security		
	Performance: missing deadlines		
	Conformance: meets certain types of specifications		
	Safety:		
issues	Fault levels. Radiation hardness, single event upsets. CMOS latch up. Memory error detection and correction. Reliability and cross strapping.		
replaceable modules	Replaceable modules – especially those designed for redundancy in a `reliable' system:		
issues	• Power distribution		
	• Heat removal		
	• IO interconnects		
	 Storage access 		
	• CPU		
	 Switching of communication 		
	 Switching tasks to another module 		
	 Switching a module off 		
	• Switching a module on		
requirements	Outcomes are function / effect		
00 1700	Emphasis is on writing identifiable requirements, leaving the document with little context and discourse of the requirement.		
	Challenges include the expense, little immediate/direct benefits.		
	Testing that the requirement is properly implemented. How you test that the requirements are the right ones.		
	Analyzing how well the tests test the implementation.		
	Attributes of a requirement's construction		
	Requirement by property.		
resilience	"the system can recover from fault."	Prnjat ibid	
risk	likelihood of a hazard, and severity of harm		
	Presence (present, extension, new) - risk is technology presence by market presence.		
	see also hazard, likelihood, servity		
risk identification	Recognize symptoms: unrealistic specifications and margins in design and test. Reliability analysis, FMEA, fault tree. How do others identify and evaluate risk? Insurance underwriters in setting premiums, NASA, other projects.		
	Analysis techniques. NMI 7120.4. Requirements and Intent DOD 4245.2 templates. Analytic hierarchy process.		
	Information gathering. Expert interviews. Structured questionnaires.		
	Known technical risks. Redundancy calculations. Test margins. Parts, materials, components selection.		
	Analysis. Assessment criteria. Risk baselines. Simulation via crystal ball, prima vera monte carlo.		
risk management	either accept it, mitigate it, or transfer it.		
risk management	Process: preliminary analysis, definition, design & development, operations.		

process	1. Identify &	understand your major risks			
	2. Decide wh	ich risks are natural to keep? Which should you seek to transfer?			
	3. Determine	your capacity for risk			
	4. Embed risk	in all decisions / processes			
	5. Align ever	ything around risk – monitor risks, manage them			
	Concept. Risk comp Measures of risk. D	ponents – technical, schedule, cost, programmatic, political. efinition of risk factor.			
	How to assign value	to risk?			
	Focus on the few ris	ks – or few groups of risk – that matter.			
	Application. Develo Establishing risk base Monitoring and repo	oping risk management plans. Developing risk assessment criteria. selines. Establishing mitigation actions and contingency planning. orting risks – lessons learned database, anomaly reporting.			
robust design	• Fault tolerance				
principles	 isolation (cont 	ainment)			
	 patching, each structures in m 	independent module has its own corrections area, well-defined nemory to allowing restarting without loss of existing flows,			
	 lifespan being 	sufficiently shorter than the failure rate,			
	 bounded behaves 	viour.			
robust features	 Update softwa 	re without shutting down or rebooting			
	 Handle failure 	s without loss of operations.			
	 verify existing 	block contents before performing patch / upgrade			
	 structured logg 	ging			
robustness	"The stability of the	system to handle all eventualities and continue to operation"	<i>Prnjat,</i> ibid		
safety	nothing 'bad' will occur; that "the risk associated with it is judged to be acceptable." <i>William Lowrance</i> , 19				
	Term	Meaning	Table 1: Distinctions		
	safety	How to prevent or reduce risks or harms			
	security	Preventing, reducing, etc others from finding information or altering			
psychological perceptions of	1. People do not be than others and	believe they are at risk. Believe that they are less vulnerable to risks less likely to be harmed.			
salety	2. People are unm	notivated			
	3. Safety is an abstract concept. Outcomes with abstract nature tend to be less persuasive than concrete outcomes ("security" outcomes are selected less because of this?). Costs are real and immediate compared with abstract gains / benefits.				
	4. People tend to	prefer a gamble-for-a-loss over a guaranteed loss.			
safety critical	Concerned with the potential harm a machine might do (e.g. should few, if any, machines strong or heavy enough to crush a person be allowed into homes?). The techniques include FMEA and design approaches:				
	 Avoid cont 				
	 Sensors to 	avoid collisions with people			
	 Being mad 	e from lighter and softer materials			
	Backup system	stems			
	 Emergency 	/ snut off switches and valves			

safety index	$= \log N$ where there is probability that 1 in N people will die from the procedure, product, etc.	
safety processor	Secondary processor: logical safety and electrical safety.	
security	"stay in correct operation state they are able to detect and avoid intentional attack."	<i>Prnjat,</i> ibid
single event effects	Effects in digital and analog devices: microprocessors, DSPs, DC/DC converters, opto- electronics, volatile & non-volatile memories Transient & permanent upsets Upset rate Soft errors, latch up, burn-out, SEFI	
underlying phenomena	Ionization by primary particles and secondaries from nuclear collisions Charge collection in small structures, Charge migration and Critical Charge Crystalline lattice deformation Damage thresholds in Silicon and Gallium Arsenide	
specification document	The intent is that the specification is without ambiguity, is complete, consistent, and that the implementation conforms to it. There are formal methods to test the conformance. A specification may be written to preserve properties in an existing implementation/.	
requirements	Includes a means of identifying requirements; we use a TEXTLABEL### (eq REQ123) but it does not have t be that way.	
	Strongly encouraged to ensure that a requirement does not have unbounded time will respond with X, but it is decoupled so could respond 100 usecs form now.	
	Requirement should be free of negative tense: not, doesn't, never, won't, etc.	
	Requirements for hat the user wants, software requirements, functional requirements, system requirements, performance requirements, constraints, etc.	
stack safety	Tracking safe range to write, and regions that are not allowed. For instance, tracking the writing of undefined areas of stack after the current (which can happen when a called subroutine returns a pointer to a variable on the stack).	
stability	failures of interconnection failures of consistency of a part decomposition to a stable intermediary form that can be quickly reassembled.	
static analysis	a body of techniques that can examine source or object code and identify properties – especially certain kinds of bugs – without executing the code.	
storage reliability classification	 The reliability of file systems and other storage mechanisms might be as follows: No special reliability mechanism Protects meta-data consistency, but not data consistency Protects content – data consistency Most systems are #1 or moderate #2. see also <i>information lifecycle management</i> 	
system wear	Reflected in subtle changes throughout system	
testers	Testers find info about quality that helps management in making better informed decisions. Testers have poor ability to prioritize; little empathy with users.	
bug testing	Can manage only a small number of testers, esp. when there is a lot of bugs. A person only reports a few bug: don't want all testers to report the same bug.	
	Start with a small set of testers	
	Expand this set only when you get the most frequent bugs fixed. Will lose some people with each round of beta expansion.	
testing automated	Load & stress testing	

testing modifications	localized change testing, regression testing, change completion checklist	
test cases	indentifying what to test, how to design test cases, how to ensure complete coverage: analyzing functional specifications for testability, equivalence, path analysis, input-based tests, risk-based testing	
test quality	Attributes of a test's construction	
	Coverage of branches	
	MCDC analysis	
thread issues with design of threaded code	Data races, lock granularity, lock ordering, modularity, blocking time, priority inversion, and deadlocks.	
	No IO's in atomics.	
Java RT	Thread stop: ability to force it go up call tree	
	Aircraft use CORBA	
trace buffer	IBM CHRP, z990 Firmware in peripherals store events to a circular buffer dedicated to the peripheral unit. z990 8x64bits. Used to trace activity. Used to alert OS of events, such as overheat. Not clear it is good enough for replay	
	aka flight recorder.	
data trace	Traces of data flow through system	
instruction tracing	Supported in some hardware. Records the functions that were called, possibly with parameters, preserves order, including return value. Record all of API calls in binary trace file, parameters of function, return value, procedure name. Detailed log of calls, done at runtime.	
traceability	Ability to follow the steps from output back to original sources. For products, this allows tracing all of the products design, and features back to the original documents approved by the company. For information, measurements, methodology and standards.	
trap instructions conditional	When hardware and/or software detects unsatisfactory operation control is transferred to a special (possibly interrupt) handler, often with pertinent address & state information. CPU or memory traps are main types. Not all traps can be ignored; complexity, frequency of occurrence, overhead, and response times. Can replace explicit test instructions.	MACH/ OS-X examples at: http://www.clozure.com/cg i-bin/viewcvs.cgi/ccl/lisp- kernel/lisp-exceptions.c http://www.omnigroup.co m/mailman/archive/macos x-dev/2000-
	Traps are, usually a fast alternative to a variety of frequently used safety constructions frequently. These constructions typically look like:	
	if (!Ptr) goto HandleError; if (Idx >= Ary->Iength) goto HandleError; if (Idx < 0) goto HandleError;	http://download.plt- scheme.org/scheme/plt- clean- cvs/src/mzscheme/gc2/vm_
	While small and compact, comparison and branch cumulatively adds up into a performance overhead on well-behaved software.	OSX.C
	The PowerPC includes a family of conditional trap instructions, such as the following, that throw a trap if R15 is null:	
	teqi R15, 0x00	
	The performance, in the common case, is that there is no branch, and that the comparison happens in parallel with other instructions. (The CPU usually guarantees that their effects will be discard if the trap is thrown). The application needs to install a custom handler to examine why a trap occurred, and to restore the processing if possible. Some even include the ability to emulate some instructions.	
	Often the handlers are OS and CPU specific, and can quite slow. When a trap is invoked – access violation, manual trap, debugging trap, instruction emulations, FPU error, etc – the CPU goes to the kernels trap table, and passes off to its trap handler. The kernel eventually passes control back to the process.	

central tasks of validation:

- to stimulate a design,
- to check that the design produces results according to its specification, and
- coverage: measure how much of a design's possible execution space has been simulated and checked

Term	Meaning	Table 2: Between validation and verification
validation	test that the behaviour is consistent with the requires, safety and efficaciousness	
verification	demonstrates that the implementation matches the stated design.	

validity checking
test setupAn empirical process to ensure that the collected data properly represents the phenomena
with in tolerances.

- 1. Examine the Average and RMS levels before the test. What is the normal and noise band? The average value at this step is the zero level.
- 2. Examine the Average and RMS levels after the test. The sample window is not long enough if the singla has not returned too the settled state.
- 3. Compute the maximum signal level and check that the full scale is larger, but not too much
- 4. Calculate the signal to noise ratio: the swing at step 1, and those during the test
- 5. Check the symmetry of noise around the signal level
- 6. Calculate figures of merit
- 7. Integrate signal to check net change
- 8. Examine the channel's spectra: is there enough bandwidth in the signal? (The signals should drop off at the top end)
- 9. Check the SRS and peak ratio
- 10. Check initial slope

10.0

verification "formal verification] FV is the use of tools that mathematically analyze the space of possible behaviors of a design, rather than computing results for particular values."

versioning Method to distinguish between two or more versions.

`

Answers questions: Is it ~100% compatible (excluding bug fixes)? Which version is newer? Is it tested and approved?

watchdog timer Those with selectable intervals, Except at the highest level of privilege, should be only allowed to shorten their time to expiration.

Neibull power	$\log(fatture rate) = c_1 t + c_0$
dW	$R(t) = G e^{-\lambda t}$
	G = constant specific to device
	λ = Sum of failure rates of all constituent components
	$\frac{1}{\lambda}$ = mean time between failures

See also Gompertz law of mortality, reliability, risk

word tearing unaligned access of machine word causing invalid (not merely out of date) data. Since one part of the word was read before the new value and another part was read after it was written. This is especially true for words that cross-cache boundaries in SMP systems and systems that require exception handlers for Chuck Wright, "Expert Column: Automated or not, data-validity check plays a significant role in test" Personal Engineering, Feb 1998 Once the products reach/exceed a satisfactory level of performance, the emphasis switches to reliability. If a reliability/product is too expensive, customers work around unreliability in current products

SAE ARP 4761 Guidelines and methods for conducting the safety assessment process on Civil Airborne Systems and Equipment. 1996 Society of Automotive Engineers.

MOD Defence Standard 0058 Requirements for Safety Related Software in Defence Equipment. 1996 UK Ministry of Defence

MOD Interim Defence Standard 08-58 Issues 1: HAZOP Studies on Systems Containing Programmable Electronics 1996 UK Ministry of Defence